Posts Tagged itrust

iTrust Database Software Security Assessment

iTrust Database Software Security Assessment

Security Champions Corporation (fictitious) Assessment for client Urgent Care Clinic (fictitious)

Amy Wees, Brooks Rogalski, Kevin Zhang, Stephen Scaramuzzino and Timothy Root

University of Maryland University College

Author Note

Amy Wees, Brooks Rogalski, Kevin Zhang, Stephen Scaramuzzino and Timothy Root, Department of Information and Technology Systems, University of Maryland University College.

This research was not supported by any grants.

Correspondence concerning this research paper should be sent to Amy Wees, Brooks Rogalski, Kevin Zhang, Stephen Scaramuzzino and Timothy Root, Department of Information and Technology Systems, University of Maryland University College, 3501 University Blvd. East, Adelphi, MD 20783. E-mail: acnwgirl@yahoo.com, rogalskibf@gmail.com, kzhang23@gmail.com, sscaramuzzino86@hotmail.com and Chad.Root@gmail.com

 

Abstract

The healthcare industry, taking in over $1.7 trillion dollars a year, has begun bringing itself into the technological era.  Healthcare and the healthcare industry make up one of the most critical infrastructures in the world today and one of the most grandiose factors is the storage of information and data.  Having to be the forerunner of technological advances, there are many changes taking place to streamline the copious amounts of information and data into something more manageable.  One major change in the healthcare industry has been the implementation of the Electronic Medical Record (EMR) systems.  Having risks and benefits, the electronic medical record systems will strive to provide and change the way healthcare industry will operate.  iTrust is a role-based health care web application.  Through this system, patients can see and manage their own medical records.  Medical personnel can manage the medical records of their patients including those provided by other medical personnel, be alerted of patients with warning signs of chronic illness or missing immunizations, and perform bio-surveillance such as epidemic detection.  Today, the gradual introduction of a of these electronic medical records lie at the center of the computerized healthcare industry and are slowly being implemented to provide modern technologies such as cloud database systems and cloud network storage as well as a way to streamline the medical data and patient information process.

 

Keywords: iTrust, database, cloud computing, software security, application security

 

iTrust Database Software Security Assessment

Security Champions Company is a software security company that specializes in assessment and analysis of software used primarily in the medical field.  Urgent Care Clinic has hired Security Champions to assess the primary cyber threats and vulnerabilities associated with the use of the open source electronic medical records software “iTrust”.  As much of the medical industry is moving toward electronic medical records (EMR), we want to ensure our client is in compliance with various stringent regulations such as the Health Insurance Portability and Accountability Act (HIPAA) and the Sarbanes-Oxley Act (SOX).  We will also provide a risk assessment and ease-of-attack threat analysis for several new requirements Urgent Care Clinic has requested to add to the iTrust software.  The following four requirements are reviewed and assessed:

  1. Add role for emergency responders to view patient emergency reports containing medical information such as allergies, current and previous diagnosis, medication and immunization history as well as blood type.
  2. Allow patients to search the database for qualified licensed health care professionals (LHCP) for specific diagnosis.  The patient will be able to view the doctor’s name, number of patients treated for the specified condition, laboratory tests requested and medication used to treat the diagnosis as well as patient satisfaction ratings.
  3. The third requirement is to update the diagnostics code tables to reflect new ICD-10 coding standards outlined by American Medical Association guidelines.
  4. The last requirement is to allow a patient to view the access log for their medical records in an online cloud database system.  This allows the patient to see what changes are made to their records and who made those changes.

iTrust Database Software Overview

iTrust is an open source software application created and maintained by engineers at North Carolina State University.  The software allows for medical staff from various locations to access patient records, schedule visits, order medications and laboratory tests, and view records, diagnosis and test results.  iTrust also allows patients to manage their care by viewing records, scheduling office visits, and finding health care providers in the area (UMUC, 2011).

iTrust Database Table Security Assessment

Each Champion Security teammate individually assessed the security of the various database tables in the iTrust database.  The tables were rated and are limited to the numerical choices 1,2,3,5,8,13,20,40,100 with 1 being the lowest security rating and 100 being the highest.  The Appendix A table represents each teammate’s individual values (noted by initials) and the average rating of those values combined in the highlighted column (see Appendix A: Table 1 – Database Table Value Points).

 

Analysis of New Requirements

The information age is growing exponentially, and the more resources and information that can be gained is critical.  This stands true to the medical field, particularly medical staff, emergency responders and patients.  Adding new requirements to the iTrust system allows for better care, medical attention, and informative information for the client.  These new requirements will enhance Urgent Care’s communication capabilities and allow for greater success.  By reviewing case-by-case scenarios regarding medical information and background information, these requirements benefit every aspect of Urgent Care’s Clinic.  The following analysis will provide more information on the new requirements.

Emergency Responder

Urgent Care Clinic is requesting four additional roles and allowable access to the iTrust healthcare cloud database system and application.  The addition of these roles and access points will be valuable to emergency responders and individuals who are seeking information for their own medical care instantaneously.  An emergency responder or a first responder is considered anyone who is qualified and certified in providing pre-hospital care prior to the patient entering the medical facility.  The need for these responders to have access to essential health information is necessary in order for them to provide the most appropriate and advance medical treatment in measures to save a patient’s life.  The responder could stabilize, treat and perform certain medical procedures on the patient according to their personal medical history (Department of Health & Humans Services, 2006).  The responder would need access to allergy, blood type, prescription history, medical history showing prior surgeries and prior diagnosis information.  This vital information is valuable when assessing individuals in the field.  The procedures that the responders are completing on the patient can then be documented in the iTrust system, so when the individual arrives at the hospital the attending medical staff can view what was done and can evaluate patient treatment from that point forward.

In order for the responder to get authorization and then be authenticated to the system, the use of a biometric control would be applied.  This authentication procedure would be extremely beneficial in the field due to the stress of the job.  The responder would use his fingerprint to gain access and then proceed to the required medical information.  The use of a password and user ID would slow response to the patient because the responder would have to remember that information.  If responders are unable to gain access and the proper medical care is not administered, this could lead to law suits or even death.  HIPAA would have a role in allowing these types of responders to gain access.  The patients could sign a HIPAA waiver during a doctor visit and have it kept in a database so access could be granted without hassle.

Find qualified licensed health care professional

            Allowing the patient access to search the iTrust cloud database system for a LHCP, would give them more control over their health care and enhance the quality of care that they receive based on their preferences and diagnosis.  This requirement will also give the user relevant information on where the medical facility is, how many people have been referred to the facility, what doctors are considered experts in a particular field, what procedures were used, and the satisfaction of the people that have been seen at that particular facility.  Allowing the patient to name their own medical preferences would also decrease man-hours for the staff normally responsible for these tasks.

Providing patients electronic health/medical information by means of a cloud database system makes way for streamlined care by providing the latest medical reports in an instantaneous manner, allows for rural individuals to gain access to specialized medical procedures, and may cut costs in certain healthcare facilities (Polito, 2012).  The advantage of being able to cut the number of patients in any single facility would allow for better care of patients, decreased wait times and a more precise diagnosis because each patient’s current medical and health information and patient history could be reviewed thoroughly and quickly by medical staff.  Finding the right health care professional would also allow the patient the opportunity to have predetermined questions to ask, have selective information prior to attending the visit, and be more advised on what to expect during the entire process.  This information could be very valuable to patients and medical providers because they would not waste their time on individuals that may not have a certain medical problem; in which case the patient would have to be referred to another doctor.  This access could provide more efficient and effective medical care.

Update diagnosis code table                

ICD-9CM is an outdated medical code system and the new internationally used code system is ICD-10.  This new code system needs to be updated in the iTrust medical application so that medical providers can accurately diagnose patients and medical staff knows what the history of the patient was.  Updating the coding system will provide proper analysis, quality management within the medical profession, increased productivity and overall compliance with medical regulations (Bounos, n.d.).  Entering the new codes would allow a patient to be seen at multiple facilities throughout the world and all medical care providers would understand the prior history.  Outdated material could cause errors in treating the patient and possibly cause severe physical harm to a patient. The ICD-10 has significant improvements which allow for diagnosis of symptoms to have fewer codes to describe the medical issue and information regarding ambulatory and managed care encounters (Centers for Disease Control and Prevention, 2012).

View Access Log

The last requirement that iTrust would like to make available to the patient is the ability to view access logs for their medical records.  The access log would provide information regarding who updated their medical information and when it occurred.  This could be very valuable to a patient as they can communicate with the facility regarding any discrepancies in their chart.  This might also act as a check and balance system between the patient and the provider, which could also assist in medical insurance billing and payment information.  For example, if a patient was diagnosed with ailment X, but the provider mistakenly coded ailment Y in the system, the insurance company may or may not cover the cost of the visit or associated procedures.  Allowing the patient to view the access log information can be provided to the insurance provider and the medical facility for correction.

Another advantage of allowing patients to view the access log is so they are able to see if someone compromised their medical information.  Being able to catch this breach early enough may allow law enforcement time to track the perpetrator before that information is used in a manner non-conducive to the patient.  Without access, the likelihood of a patient knowing their information has been tampered with is severely lessened.

HIPAA was enacted to ensure that personal medical and health information remains secure from others that could use the information wrongfully or intentionally against an individual.  HIPAA allows the patient more control over their personal information, applies limits on who can see the information and on what information is disclosed (Thacker, 2003).  This law itself provides the patient with access to their medical information and the ability to see what was logged in their records.

Applying the new requirements to the iTrust medical cloud database system allows responders, medical professionals and patients the ability to see information that could lead to a proactive sense of medical care.  The efficiency in how medical care is provided could save on medical care costs and make hospital visits more effective due to the limited number of individuals waiting to be seen. The patients will have the option to make the informed decision on which doctor they will see and also have more background information before they see any individual.

 

Ease of Attack

            The iTrust cloud database is relational and made up of tables that account for all the data processing needs of a medical office.  The tables record transactions and patient information.  Specifically, data is recorded for all patients, is considered personal health information and falls under the Health Insurance Portability and Accountability Act (HIPAA).   New requirements to the database will pose risks to the confidentiality, integrity and availability (CIA) of data if threats are not mitigated.

The following tables provide supplemental data that feed into the patient record and transaction history.  These tables include medical procedures (table: cptcodes), lists procedures performed at office visits and hospitals.  Hospitals (table: hospitals), lists hospitals in the system.  Diagnosis and immunization (table: icdcodes), lists diagnoses and immunizations with codes.  The standard medication codes (table: ndcodes) provides a list of medications.

Other tables in the system are relational and are linked to tables in the system through ‘id’ fields.  Allergies (table: allergies) links with the patient record listing allergy by type or description.  Lab procedures (table: labprocedure), provides information on what was performed during an office visit and is related to the patient, and office visit tables.  Login failure log (table: loginfailures) logs failures, records the date, time, and IP address.   Office visit table (officevisits) relates the patient id, hospital id, and office id to the office diagnosis (table: ovdiagnosis), office medication (table: ovmedication), office procedure (table: ovprocedure), office survey (table: ovsurvey) tables.  The patients table is a central table that contains personally identifiable information, and relates to the patient health information table, personnel, lab procedure, users, and transaction log tables.  Medication codes (ndcodes), office visits (table: officevisits), office visit diagnoses (table: ovdiagnosis), office visit medication prescription (table: ovmedication), office visit medical procedure (table: ovprocedure), office visit survey (table: ovsurvey), patients (table: patients), personal health information (table: personalhealthinformation), personnel (table: personnel), transaction log (table: transactionlog), and users (both patients and personnel called ‘users’).  Figure 1: Relational Design shows the relations between the tables.

Ease of attack is the calculation of valued risk by table (value points) on a scale of 1-100.  The value points show which table will be least attractive and which table will be most attractive to attack.  Ease points are calculated by determining the average value points for each requirement multiplied by the maximum value (or highest value) to obtain a security risk value.  The requirements are ranked by security risk, where a higher value means a higher ease of attack and a lower value means a lower ease of attack (see Appendix B: Table 3 – Security Risk).  The requirements in order of ‘ease of attack’ are the ability to view the access log of who has viewed their medical records by date, an additional role of emergency responder (ER) who will be able to see a ‘report’ of the patient that details vital medical information, the ability to query for a medical professional according to diagnosis and their zip code, finally an update to the diagnosis code for all diagnoses beginning January 1, 2010.  Ease of attack is calculated by a ranked risk of tables used by each requirement (see Appendix C: Table 3 – Security Risk).

The most vulnerable requirement is providing the patient the ability to view their access log.  The access log provides vectors of attack that allow the potential malicious user to take advantage  of the inference problem (Newman, 2009) to create a picture of internet protocol (IP) addresses within the network, the users medical identification (MID), and action.  A good configuration of the network will allow the attacker to focus in on subnets and eventually build an attack using database foot printing (McDonald, 2002) and network configuration.  Personnel and other patient’s user IDs could be vulnerable to being seen.  An attacker can infer what user IDs belong to certain personnel and eventually determine the level of access (i.e., Doctor, Administrator, etc.).

 

 

Figure 1: iTrust Relational Design


Allowing emergency responders the ability to pull a report that will show the patient’s vital statistics has several vulnerabilities.  The vital record statistics can be accessed from a police cruiser, ambulance and possibly through a smart-phone type device.  As this information is considered personal health information, there is a possibility that records can be left in the open, or accessed by any emergency responder regardless of an emergency.    A malicious user can glean a lot of knowledge for further attacks by inferring records combined with using an emergency responder access level.  Personal records provide information into other hospital or provider accounts that may be exploited to gain either more information or elevated access to other systems within iTrust.

The need to update diagnosis codes throughout the system implies that the access control level providing the ability has access to most all tables within the iTrust system.  The threat is low, all diagnoses must be coded with ICD-10 rather than ICD-9CM and saved to the patient and healthcare provider record.  A malicious attacker could use this attack vector to establish the database’s footprints as a platform for further attacks.

The hardest attack vector will be the ‘find qualified healthcare professional’ requirement.  A diagnosis and zip code are all that are needed to query the database to pull up potential healthcare providers in the patient’s locality.  If the malicious attacker has already exploited one of the easier vulnerabilities presented by the new requirement(s), data provided in a report could help determine how a database is structured.

The new requirements assume that the system as a whole is secure and has not already been breached.  The relational database’s design provides for efficiency in data processing and access.  The design also presents challenges to security if they are not mitigated.  A malicious attacker can infer a lot about the patients, personnel, and users within the database because of its relational design.  Security mitigations need to provide a level of confidentiality to ensure personally identifiable information is not vulnerable per regulations ensuring privacy.

Threats, Vulnerabilities, and Liabilities at Urgent Care Clinic

With the advancement of technology and the growing trends of enterprise networks, medical clinics like Urgent Care are becoming innovative and adopting new forms of database storage and network systems.  This means the implementation of a cloud database system or a form of cloud storage.  Cloud database systems are all the rage, and in a broad sense, they refer to virtual servers housed on the Internet used for storage of data.  The cloud database system focuses on increasing the capabilities and the capacity of network storage without having to invest in a new infrastructure.  It is a technology that utilizes remote servers to maintain data and applications that can be accessed by consumers and businesses at any time and from anywhere using the Internet (Gruman & Knorr, 2012).  It refers to many different computing models like Platform as a Service (PaaS)[1], Software as a Service (SaaS)[2], and Infrastructure as a Service (IaaS)[3].  However, implementing a medical cloud database system or utilizing Urgent Care Clinic’s iTrust cloud database services can have both positive and negative effects on data security and consumer availability.

Technological advancements and the unlimited accessibility involved with cloud storage, especially electronic medical records, opens additional avenues for vulnerabilities and threats against data, network systems, and company reputations (Trend Micro, 2011).  Cloud storage is here to stay and some very important threats need to be addressed in iTrust’s cloud database systems. With large amounts of data being transferred to the cloud storage servers, physical attacks are turning to network infiltrated attacks and the abusive use of the cloud through dishonest activities.  Because cloud computing and cloud storage deals with privacy and a seamless and easy registration system, criminals using new and advanced technologies are targeting weak registration systems and sliding under the limited fraud detection software.  This ranks as an extremely high security risk for both businesses and consumers utilizing the iTrust system.  The potential use of botnets has the ability to infiltrate a public cloud network and spread malware and viruses to thousands of computers.  This has already been seen in the real world with the “Zeus Botnet” attacking the Amazon cloud.  The “Zeus Botnet”, having infiltrated Amazon’s EC2 cloud computing service, installed a virus and took over complete command control of a high performance cloud platform (Cimpanu, 2009).  This malware caused a system wide outage while remaining hidden and transferring millions of dollars; it had to be dealt with.  In this instance and other similar instances, publicly blacklisting IaaS network addresses has been one way to combat and defend against spam and phishing.  To further defend against such risks, enhanced monitoring methods dealing with registration and initial validation, should be initiated. Whether implementing cloud analytics software or just more personnel for monitoring purposes, defending against such malware or botnets is a move in the right direction.

Based on the Cloud Security Alliance (CSA), another threat to cloud computing and virtual data storage is making sure that the security implications associated with usage and integrated into the service models are understood by consumers.  Relying on a weak set of application programming interfaces (APIs) exposes organizations to a variety of security related issues including availability, confidentiality, and accountability (Cloud Security Alliance, 2010, p. 9).  Rectifying this situation involves better authentication and encryption procedures on access controls.  Also, examining security models of iTrust’s data storage interfaces will help to reduce the susceptibility of attacks on a company’s cloud network. What does this mean for consumers?  As for the users and consumers of Urgent Care Clinic’s cloud network, this only helps and instills them with a sense of confidence when they are logging into the virtual storage network; their access information and registration will be kept confidential and secure.

Risks on Urgent Care’s end are also apparent, this means having a separation of duties so as to not run into malicious attacks from a single insider with too much power and access.  When ranking this threat among others, it needs to be at the top of the list.  The impact of a malicious insider can be devastating to users and have and even larger impact on the organization.  Although this has not been seen in the aspect of cloud computing and using virtual database systems today, insider attacks do happen.  Financial crash, productivity loss, and damage to the company’s integrity and reputation are just a few areas affected by malevolent insiders.  As the human element takes over and companies move toward virtual storage systems, it becomes critical for consumers to understand what policies and procedures are in in place to thwart such wicked attacks.  Urgent Care needs to enforce stricter supply chain management systems by incorporating a separation of duties as a way to bring checks and balances into the iTrust application.  Also, security breach notification policies need to be applied and employees need to be aware of their surroundings and report any atypical information or suspicious behavior.  Training and preventative measures go a long way in preserving company data and brand reputation.

ITrust cloud database users must also be aware of the issues revolving around shared technologies.  Whether this be virtual machines, management technologies, or communication systems, these shared technologies have never been set up for strong compartmentalization.  As a result, hackers or malicious individuals focus on how to influence the processes of other cloud database customers, and how to gain unlawful access to sensitive medical data.  For example, a zero-day attack or one that exploits computer application vulnerabilities, such as the blue pill technology, has the potential to spread rapidly across a public cloud and expose all the data within the server.  The “Blue Pill Technology” is a program written directly for a particular operating system that, if implemented, could embed malware into a system and go undetected until it is too late. Because this is a phishing style attack, implementation of security best practices with high-tech monitoring software will help prevent such things from happening.  In addition to monitoring software, enforcing some sort of service level agreement for vulnerability remediation and continual scanning and auditing will continue to help keep clinical data and the iTrust virtual storage system secure.

According to cloud computing and cloud database system standards, another risk that ranks up there with the other threats and vulnerabilities is the sense of security and protection of sensitive information and personal data.  Companies need to secure information and data through identity management.  Identity management has been described as the most essential form of information protection that an organization can use (Aitoro, 2008, Para. 3) and can be defined as the process of representing, using, maintaining, and authenticating entities as digital identities in computer networks (Seigneur & Maliki, 2009, p. 270).  Along with the need for identity management is the requirement for accurate auditing and reporting due to federally mandated, regulatory, and compliance directives such as Sarbanes-Oxley (SOX) and Health Insurance Portability and Accountability Act (HIPAA).  The Sarbanes-Oxley Act, enacted in 2002, is legislation designed to protect shareholders and the general public from accounting errors and fraudulent enterprise practices. The SOX act is governed by the Securities and Exchange Commission (SEC), which sets deadlines for compliance and publishes rules on requirements. Additionally, Sarbanes-Oxley outlines which records are to be stored and for how long (Spurzem, 2006, Para 1).  The Health Insurance Portability and Accountability Act (HIPAA) provides federal protections for personal health information held by covered entities and gives patients an array of rights with respect to that information. Furthermore, the HIPAA Privacy Rule is balanced so that it permits the disclosure of personal health information needed for patient care and other important purposes.  The HIPAA Security Rule specifies a series of administrative, physical, and technical safeguards for covered entities to use to assure the confidentiality, integrity, and availability of electronic protected health information (U.S. Department of Health and Human Services, n.d., Para. 1).  As a direct result of the organizational needs for both identity management and accurate federal reporting, identity management systems were developed that provide the ability to log, control, audit and report on end user access to particular information assets and serve as the foundation of an organization’s threat and overall compliance strategy (DeFrangesco. 2009, Para. 1-2).  Identity management systems are designed to create processes, which address the five fundamental aspects of identity management — Authentication, Authorization, Accountability, Identification, and Auditability (UMUC 2, 2010, p. 5).

Additionally, there are many ways in which data can be compromised and not having a backup of sensitive material remains the biggest fault among users and organizations.  Because data loss can have an overwhelming negative impact on a business, it is in the best interest of the company to provide proper policies and hardware for data duplication.  Not having data backup in place only renders a company’s information unrecoverable.  The threat that data will be compromised in the cloud increases due to the number of and interactions between risks and challenges which are either unique to virtual database systems, or more dangerous because of the operational characteristics of the virtual cloud environment (Cloud Security Alliance, 2010, p. 12).  Besides the company’s reputation and integrity being compromised, there is a significant negative influence on customer morale and trust. A company is only as good as the quality of work it produces and when data is leaked or lost, users are not happy.  Cloud information systems and implementing virtual data storage revolves around the ability to access sensitive data and personal information at any time and if this service were to go down or be compromised, a company’s reputation will be ruined and a significant financial impact will be placed on the organization.  Even worse, depending on the incident, a company might incur legal ramifications for possible compliance violations.  For an organization to avoid severe occurrence of data loss, multiple backups should be in place and the data being stored on the network needs to be encrypted so it can be secure in transit.  Not only will this provide a sense of data integrity for Urgent Care, it will offer peace of mind to the consumers utilizing the iTrust virtual data storage system.

Another issue that remains a legitimate threat to iTrust users is account service and traffic hijacking.  Ranging from phishing to spam, stolen user credentials or mobile devices allow hackers to infiltrate full company networks.  With sensitive data being hosted on virtual servers, hackers have an all access pass to everything just by gaining simple entrance, user login information, or an unmonitored mobile device.  Because untrained and gullible employees remain the easiest point of entry, an attack on passwords, devices, and user credentials remain at the top of the charts.  If an attack were to happen on the Urgent Care network, the hacker would have the ability to monitor transactions, manipulate data, and steal personal customer information all at the click of a button.  Preventative measures must be taken by applying password policies, tracking software, and Internet usage information to all employees.  Employees must keep personal information and credentials to themselves and appropriate monitoring software must be introduced to oversee all activity within an organization.  “Organizations like Urgent Care should be aware of these techniques as well as common defense in depth protection strategies to contain the damage resulting from a data breach” (Cloud Security Alliance, 2010, p. 13).

Finally, when adopting Urgent Care’s virtual storage network service, it is important to provide users with PCI compliant software services.  Standards, compliance of internal security procedures, or the information that might be disclosed after an incident occurs, tend to be overlooked and cause and unknown risk profile when moving ahead with cloud computing.  Because companies want to move forward with virtual network storage due to the low costs and other benefits that come with implementation, often these overlooked questions, like how is data being stored or who has access, may lead to serious malicious threats.  Unknown risk profiles can better be understood when analyzing the Heartland Data Breach.  In May of 2008, Heartland Data Center, the fifth biggest payments processor in the United States, was hacked into using known-vulnerable software.  This known vulnerable software came packed with a few loopholes to allow hackers to embed a data sniffer, capturing credit card information, card numbers, expiration dates, and internal bank codes, to allow them to duplicate cards and steal customer and business finances (Slattery, 2009).   Once Heartland knew about the issue they only took minimal steps to rectify the situation.  Heartland did not take the extra effort to comply and notify every single user that was affected.  Rather, they were only willing to do the bare minimum to comply with state laws.  If an organization is to learn from past mistakes and take anything from the Heartland Data Breach, then it would be to go above and beyond the bare minimum to not only be in compliance with state and federal laws, but to contact every affected user while incorporating proper incident response procedures.  Not abiding by these rules or taking the extra step to have a proper incident response plan can cause Urgent Care’s reputation to take a dive and will in turn, have negative ramifications on existing and future customers from utilizing the iTrust database service.  Chris Whitener, Chief Security Strategist for Hewlett-Packard, said, “companies should not jump into the cloud or virtual network storage without a proper risk assessment” (Mimoso, 2010).  Organizations need to be aware of the risks and evaluate the vulnerabilities as needed.

In summary, the cloud and virtual database storage is, and will continue to grow and be part of the critical infrastructure of many businesses such as Urgent Care, and so must the security and response policies and procedures be considered when migrating to the iTrust virtual storage system.  “This role is likely to grow as a multitude of new services are developed and commercialized and users’ level of familiarity and comfort, with this approach to service delivery, develops and grows” (Kate, 2011).  Companies are in it for the cost and benefits that can be gained from cloud computing and virtual storage systems but they should be focused on the consumer and end-user aspect of the business.  This is what is going to drive a company to the next level.  Ultimately, the end-user is the one experimenting and taking the risk by providing a facility such as Urgent Care with sensitive personal data.  Organizations taking the next step to secure, monitor, and regulate the information housed on the virtual database network are the ones more likely to give peace of mind to the end-user.  “From this study of current cloud computing and virtual storage practices and inherent risks involved, it is clear that at present there is a lack of risk analysis approaches in the cloud computing environments. A proper risk analysis approach will be of great help to both Urgent Care and their patients. With such an approach, patients and staff can be guaranteed data security and Urgent Care Clinic can win the trust of their customers” (Angepat & Chandran, 2012).  Cloud computing serves as an ever-growing technology for storage and data processing and the threats and vulnerabilities involved to hang by the wayside.  It is and will always be in the best interest of a company like Urgent Care to test these threats and make changes above and beyond expectations.  If Urgent Care’s integrity is compromised, then what else is there? Nothing.  It is in the best interest of any organization, to make an effort to fortify their cloud network and take into consideration the threats focused on in this paper, to give ample knowledge to defend against attacks and beef up security.

Changes to Security Management Policies

With the inclusion of the new requirements, changes will have to be made to the security policy in order to reduce risk. These changes can come over time, but it must also take as little time as possible. The first step is to improve authentication protocols, such as using stricter password requirements or PKI-based authentication (Katsumata, Hemenway, & Gavins, 2010). Admittedly, a more stringent password requirement may be more of a hassle for patients. On the other hand, employees should be expected to have strong passwords or utilize the PKI system. Cost may factor into this change, and indeed the integration of a PKI system can cost up to $1,000,000 (Katsumata et al., 2010). However, the risk reduction is far higher for PKI compared to passwords, and the cost-to-benefit ratio is much lower in comparison (Katsumata et al., 2010). Security is an investment, not only to the company, but also its users.

The inclusion of regular audits can help improve and refine access controls, making sure that employees have the correct authentication and patient access is both secure and unencumbered (Sommer & Brown, 2011). Penetration testing can find weaknesses in the system as the new roles are established and the entire system changed to incorporate the new security measures (Sommer & Brown, 2011). Lastly, plans for disaster recovery and mitigation should be prepared. Even with all the latest technologies and best policies, there is always the chance that someone will have the luck or skill of breaking through all the barriers. As such, having contingency plans can help reduce the impact of a security breach (Sommer & Brown, 2011). Data redundancies and system technicians trained and prepared for such a crises can help mitigate damage considerably (Sommer & Brown, 2011).

Each requirement needs to be fine-tuned over time for any potential leaks and security hazards. For example, accessing system logs would require strong authentication and regular audits. The audit itself can be a universal security check-up on each requirement, as the audits seek out both weaknesses and discrepancies in the system (Sommer & Brown, 2011). Be it patients’ access rights, emergency responder accesses, or system administrator access, each profile must be scrutinized for properly configured permissions and access controls. Of the three requirements, updating the diagnosis code table has the lowest priority. Authentication is still necessary, but the team had decided that it was unlikely to be a target for attack. Coming to this conclusion was most definitely a team effort.

Reaching consensus over prioritization of security issues was a surprisingly uncomplicated task. Each member of the team reviewed the iTrust addendums and filled out the tables per individual opinion. Individual tables were collected and the values averaged. This way, every team member’s opinion is taken equally and fairly. Fortunately, while there were minor differences on security values and ease of attack points, all team members had very similar tables regarding prioritization. Every team member agreed that certain tables, such as cpt, hospitals, icdcodes, and ovprocedure, were not of high value for attacks. Similarly, the team had similar opinions in that the patient, personalhealthinformation, personnel, and users tables were of the highest values, and thus, the most likely to be attacked. Despite the new requirements needing different access levels to different tables, the team determined that all new roles are equally viable, and highly vulnerable, to attack. This was because of number of tables each role needed access to; each requirement would access a high-risk table at some point. As a result, the team agreed that all new requirements were at high risk for attack. Lastly, using the ease-of-attack value combined with the asset value, the team was able to prioritize the security issues.

Conclusion                                                                                                         

There are always lessons to be learned when reevaluating an existing security policy. It is foolhardy to blindly set up new requirements and roles without properly assessing the risk factors these new roles may introduce. Rather, it is important to examine both the new requirements as well as currently established roles and determine the level of risk they represent. By looking at this objectively, we can produce a priority list.  In establishing a priority list, we are better able to relegate appropriate resources to protect particularly vital data tables without compromising the overall security of the network. Since these modifications will reflect on security as a whole, we must be careful in making these changes. Ensuring compliance with federal standards is a fantastic first step in the right direction, but we must also look to exceeding these minimum requirements. This leads to establishing trust between provider and client, and trust is what builds successful relationships. An important lesson learned is to make certain that we both deserve and can hold onto the trust of clients, and an excellent way to do so is to make their data secure.

 

Appendix A: Table 1 – Database Table Value Points

Table Value (SS) Value (TR) Value (KZ) Value (BR) Value

Avg.

Use in Requirement #
allergies 20 15 1 20 20  1,3
cptcodes 1 10 3 3 3 2,3
hospitals 5 5 5 5 5 1,2,3
icdcodes 5 20 5 5 5 1,2,3
labprocedure 13 70 40 40 40 2,3,4
loginfailures 40 40 20 20 40 3,4
ndcodes 1 50 3 3 3 1,2,3
officevisits 8 4 20 8 8 2,3,4
ovdiagnosis 20 60 40 20 20 1,2,3
ovmedication 40 3 13 20 40 1,3
ovprocedure 1 30 2 1 1 2,3,4
ovsurvey 1 2 1 1 1 2,3
patients 100 80 100 100 100 1,3,4
personalhealthinformation 100 40 40 100 100 1,3,4
personnel 100 90 100 100 100 2,3,4
transactionlog 13 1 20 20 20 4
users 20 100 100 40 100 3,4
longtermdiagnosis n.d. 40 1 n.d. 40 1,3
shorttermdiagnosis n.d. 60 3 n.d. 60 1,3

 

 

 

Appendix B: Table 2 – Database Tables Used by Requirement

Requirement Table(s) Used (Consensus) Average Value Points of Each Table Max Value Average
1:  Add role:  emergency responder. Allergies

hospitals

icdcodes

longtermdiagnosis

ndcodes

ovdiagnosis

ovmedication

patients

personalhealthinfo shorttermdiagnosis

20

5

5

40

3

20

40

100

100

60

100
2:  Find qualified licensed health care professional. Cptcodes

Hospitals

Labprocedures

icdcodes

ndcodes

Officevisits

ovdiagnosis

Ovprocedure

Ovsurvey

Personnel

3

5

40

5

3

8

20

1

1

100

100
3:  Update diagnosis code table. Allergies

Cptcodes

Hospitals

Icdcodes

Labprocedure

Loginfailures

Ndcodes

Officevisits

Ovdiagnosis

Ovmedication

Ovprocedure

Ovsurvey

Patients

Personalhealthinformation

Personnel

Transactionlog

Users

Longtermdiagnosis

shorttermdiagnosis

20

3

5

5

40

40

3

8

20

40

1

1

100

100

100

20

100

40

60

100
4:  View access log.  Labprocedure

loginfailures

officevisits

patients

Personal health info

personnel

transactionlog

users

 

 

40

40

8

100

100

100

20

100

100

 

 

 

Appendix C: Table 3 – Security Risk

Requirement Ease of Attack Points (Average) Average Max Value of Asset Points Security Risk Rank of Security Risk
1:  Add role:  emergency responder. 39.3 100 3930 2 (based on higher ranking average)
2:  Find qualified licensed health care professional. 18.6 100 1860 4
3:  Update diagnosis code table. 37.15 100 3715 3
4:  View access log.  63.5 100 6350 1


 

References

Aitoro, J. (2008). Identity Management. Retrieved from: http://www.nextgov.com

Angepat, M., & Chandran, S. P. (2012, October 27). Cloud Computing: Analysing the risks involved in cloud computing environments. Retrieved July 29, 2012, from Cloud Computing: School of Innovation, Design and Engineering: www.idt.mdh.se/kurser/ct3340/ht10/…/16-Sneha_Mridula.pdf

 

Bounos, M. (n.d.). Evaluating computer assisted coding systems & ICD-10 readiness. Wolters Kluwer Law& Business.  Retrieved from http://www.mediregs.com/files/1007-1/WKLBEvaluatingCADICD10.pdf

 

Centers for Disease Control and Prevention. (2012). International classification of diseases, tenth revision clinical modification.  Classification of Disease, Functioning, and Disability.  Retrieved from http://www.cdc.gov/nchs/icd/icd10cm.htm

 

Cimpanu, C. (2009, December 10). Zeus Botnet Infiltrates Amazon’s Cloud. Retrieved July 29, 2012, from Softpedia: http://news.softpedia.com/news/Zeus-Botnet-Infiltrates-Amazon-s-Cloud-129438.shtml

 

Cloud Security Alliance. (2010, February 24). Top Threats to Cloud Computing V1.0. Retrieved July 29, 2012, from Cloud Security Alliance: http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

 

DeFrangesco, R. (2009). Identity and Access Management as an Audit Tool. Retrieved from: http://www.itbusinessedge.com

 

Department of Health & Humans Services. (2006). Emergency responder electronic health record. Officer of the National Coordinator for Health Information Technology.  Retrieved from healthit.hhs.gov/…/EmergencyRespEHRUseCase.pdf

 

Gruman, G., & Knorr, E. (2012, February 29). Retrieved July 29, 2012, from Cloud Computing: Info World: http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031

 

Katsumata, P., Hemenway, J., & Gavens, W. (2010). Cybersecurity risk management. The 2010 Military Communications Conference – Unclassified Program. Retrieved from http://202.194.20.8/proc/MILCOM2010/papers/p1742-katsumata.pdf

 

Kate. (2011, June 7). Securing Your Data In the Cloud: An Insiders Perspective. Retrieved July 29, 2012, from Kate’s Comments: http://www.katescomment.com/securing-data-in-the-cloud/

 

Mimoso, M. S. (2010, March 1). Cloud Security Alliance releases top cloud computing security threats. Retrieved July 29, 2012, from Tech Target: Search Cloud Security: http://searchcloudsecurity.techtarget.com/news/1395924/Cloud-Security-Alliance-releases-top-cloud-computing-security-threats

 

McDonald, S. (2002, April 8). SQL Injection: Modes of attack, defense, and why it matters. Retrieved July 28, 2012, from Sans.org: http://www.sans.org/reading_room/whitepapers/securecode/sql-injection-modes-attack-defence-matters_23

 

Newman, R. (2009). COMPUTER SECURITY: PROTECTING DIGITAL RESOURCES. Sudbury, MA: Jones and Bartlett Publishers International.

 

Polito, J. M. (2012). Ethical Considerations in Internet Use of Electronic Protected Health Information. Neurodiagnostic Journal, 52(1), 34-41.

 

Seigneur, J-M. & Maliki, T. (2009). Identity Management. In Vacca, J.R. (Ed.), Computer and information security handbook. Boston, MA: Morgan Kaufmann Publishers.

 

Slattery, B. (2009, January 21). Heartland Has No Heart for Violated Customers. Retrieved July 29, 2012, from PC World: http://www.pcworld.com/article/158038/heartland_has_no_heart_for_violated_customers.html

Sommer, P., & Brown, I. (2011). Reducing systemic cybersecurity risk. Organisation for Economic Cooperation and Development. Retrieved from http://papers.ssrn.com

 

Spurzem, B. (2006). Sarbanes-Oxley Act (SOX). Retrieved from: http://searchcio.techtarget.com

 

Thacker, S. (2003). HIPPA privacy rule and public health. Center for Disease Control and Prevention.  Retrieved from

http://www.cdc.gov/mmwr/preview/mmwrhtml/m2e411a1.htm

 

Trend Micro. (2011, August 23). Security Threats to Evolving Data Centers. Retrieved July 29, 2012, from Virtualization and Cloud Computing: www.trendmicro.com/cloud…/rpt_security-threats-to-datacenters.pdf

 

U.S. Department of Health and Human Services. (n.d.). Health Information Privacy. Retrieved from: http://www.hhs.gov

 

University of Maryland University College. (2011). CSEC 610: Cyberspace and Cybersecurity, Interactive Case Study II. College Park, MD, USA.

UMUC. (2012). Module 9: Virtualization and Cloud Computing Security. Adelphi, MD, USA. Retrieved July 23, 2012, from http://tychousa5.umuc.edu/cgi-bin/id/FlashSubmit/fs_link.plclass=1206:csec630:9042&fs_project_id=389&xload&ctype=wbc&tmpl=csecfixed&moduleselected=csec630_09


[1] “Platform as a Service (PaaS) is a way to rent hardware, operating systems, storage and network capacity over the Internet” (TechTarget, PaaS, 2012).

[2] “Software as a Service (SaaS) is a software distribution model in which applications are hosted by a vendor or service provider and made available to customers over a network” (TechTarget, SaaS, 2012).

[3] “Infrastructure as a Service is a provision model in which an organization outsources the equipment used to support operations, including storage, hardware, servers and networking components” (TechTarget, IaaS, 2012).

Advertisements

, , ,

Leave a comment